Lottery Problem

Assume that the state of California offers a lottery in which you can select 5 different numbers in any order ranging from numbers 1 to 50. In this process there are 5 winning numbers, and 45 losing numbers.

Let x be the number of winning numbers that you can have in any selection. Since we can count the number of winning numbers on any selection, then x is a discrete random variable and can assume 0,1,2,3,4, or 5 as values.

When x=0, this means that we have 0 of the 5 winning numbers and 5 of the 45 losing numbers.

When x=2, we conclude that we have 2 of the 5 winning numbers, and 3 of the 45 losing numbers.

When x=4, we conclude that we have 4 of the 5 winning numbers, and 1 of the 45 losing numbers.

Constructing Probability distribution table:

- 1. Since there are $50\,\mathrm{numbers}$ and we are selecting $5\,\mathrm{of}$ them in any order, then the total number of ways that we can do this selection is $50^{\hbox{$C}}5$.
- 2. When x=0, then we have 0 of the 5 winning numbers, and the total number of ways that we can do that is given by $5^{\hbox{$C$}}0$.
- 3. When x=0, then we have 5 of the 45 losing numbers, and the total number of ways that we can do that is given by $45^{C}5$.
- 4. Now to find the probability when x = 0:

$$P(x=0) = \frac{5^{C} 0^{\bullet} 45^{C} 5}{50^{C} 5}$$

We can use the same type of approach to find the probabilities when

$$x = 1, x = 2, x = 3, x = 4, and x = 5.$$

Now here is our probability distribution table:

X	P(x)	P(x)
	(Exact)	(Four Decimals)
0	$\frac{{}_{5}C_{0}^{\bullet}{}_{45}C_{5}}{{}_{50}C_{5}}$	0.5766
1	$\frac{{}_{5}^{C_{1}^{\bullet}}{}_{45}^{C_{4}}}{{}_{50}^{C_{5}}}$	0.3516
2	$\frac{{}_{5}C_{2}^{\bullet}{}_{45}C_{3}}{{}_{50}C_{5}}$	0.0670
3	$\frac{{}_{5}C_{3}^{\bullet}{}_{45}C_{2}}{{}_{50}C_{5}}$	0.0047
4	$ \frac{{}_{5}^{C}{}_{0} \cdot {}_{45}^{C}{}_{5}}{{}_{50}^{C}{}_{5}} $ $ \frac{{}_{50}^{C}{}_{5}}{{}_{50}^{C}{}_{5}} $	0.0001
5	$\frac{{}_{5}C_{5}^{\bullet}{}_{45}C_{0}}{{}_{50}C_{5}}$	0.0000

If you enter the first two columns into **L1** and **L2**, you can calculate μ, σ , and σ^2 .

After entering the first two columns into $\mathbf{L1}$ and $\mathbf{L2}$, then apply the following sequence of keys on your calculator:

STAT CALC 1-VAR STATS L1, L2 ENTER

Please note that $s_{\scriptscriptstyle X}$ is blank and n=1 , otherwise something must be wrong.